Il Laser

Il Laser (3)

Alla scoperta del LASER e delle sue innumerevoli applicazioni.

Il laser fa male o fa bene alla salute ? Effetti del laser sull'uomo

Il titolo di questo articolo riprende una domanda che , un po' semplicisticamente , viene posta dai neofiti del laser : quando l'uso del laser fa male e può quindi creare danni alla salute dell'uomo ( principalmente su occhi e pelle ) e in quali applicazioni può invece avere effetti positivi sulla salute dell'uomo.

Gli effetti positivi sono legati all'utilizzo terapeutico o estetico dei laser : in ambito estetico sono ormai disponibili depilazione laser , trattamento di rughe , cicatrici , smagliature e capelli. In ambito medico , le applicazioni sono davvero tante : chirurgia , oncologia ( riscaldamento selettivo e distruzione di cellule tumorali ) , oculistica ( diffusissimo è ormai l'intervento alla retina ) , urologia ( distruzione di calcoli renali ) , ecc

Riguardo invece gli effetti negativi anticipiamo una risposta sintetica , che andremo ad approfondire nel resto dell'articolo : ci sono laser che , anche se usati impropriamente , non hanno conseguenze negative sull'uomo e ci sono laser che , invece , possono far male all'uomo e quindi devono essere utilizzati con molta attenzione e da personale esperto e appositamente formato. A tale proposito ci vengono in aiuto le norme ( CEI 76-2CEI EN 60825 ) , che effettuano proprio una suddivisione dei dispositivi a laser in base a classi di pericolosità.

Le norme si appoggiano alla definizione di Livello di Esposizione Accettabile ( LEA ) e Esposizione Massima Permessa ( EMP ) : i laser che non fanno male alla salute vengono detti laser intrinsecamente innocui e vengono classificati di classe 1 ( nessun rischio ) . Sono di potenza inferiore a 0,04 mW e non possono creare danni all'uomo in nessuna condizione , neanche per esposizioni prolungate e se puntati sugli occhi con sistemi di osservazione come binocoli e microscopi . Se invece sono possono diventare pericolosi in caso di osservazione con questi sistemi ottici , vengono definiti di classe 1M ( rischio basso ) .

A crescere dalla classe 1 , iniziano ad essere importanti i distinguo :

Laser di classe 2 ( rischio basso ): sono di potenza inferiore a 1mW ed emettono luce nello spettro visibile ( tra 400 nm e 700 nm ). Non sono laser intrinsecamente sicuri e bisogna pertanto evitare di guardare direttamente il fascio o di puntarli sulle persone. E' anche vero che , spesso , basta il normale riflesso che si ha di fronte a una luce intensa per provocare la chiusura della palpebra ed evitare danni . Va comunque opportunamente segnalato il rischio e il divieto di guardare direttamente nel fascio.

Laser di classe 2M ( rischio basso ) : hanno caratteristiche simili ai dispositivi di classe 2 , ma diventano pericolosi se osservati con sistemi ottici come lenti e binocoli . Questo rischio va sottolineato e specificato , invitando gli utenti a non utilizzare i sistemi ottici in questione.

Laser di classe 3R : sono dispositivi caratterizzati da un rischio medio , con lunghezza d'onda più ampia dello spettro visibile ( tra 302,5 nm e 10^6 nm ) per cui , se puntati negli occhi , possono anche non provocare reazioni difensive come il riflesso corneale. L'uso ne è consentito solo a persone autorizzate e formate.

Laser di classe 3 : il rischio è medio e sono pericolosi se puntati direttamente sugli occhi . Minore è il rischio in caso di riflessioni del fascio. L'uso è consentito solo a persone autorizzate e formate , la zona di accesso al laser deve essere confinata e sorvegliata. Viene formato un Tecnico Sicurezza Laser ( TSL ) , a controllare il rispetto delle prescrizioni .

Laser di classe 4 ( rischio alto ) : sono laser pericolosi per l'uomo non solo in caso di esposizione diretta alla vista , ma anche nel caso di esposizione indiretta e , inoltre , l'irradianza è tale da poter provocare danni alla pelle e ad altri tessuti , oltre che poter provocare incendi. Vanno quindi usati con molta cautela e solo da persone con formazione specifica. La zona di utilizzo va confinata e sorvegliata e al Tecnico Sicurezza Laser spetta verificare che queste condizioni siano rispettate.

Read more...

Cos'è il laser , la sua storia , quali sono le applicazioni del laser .

Origine , nome e storia del Laser

Laser è l'acronimo di Light Amplification by Stimulated Emission of Radiation , ovvero si tratta di un amplificatore di luce per emissione indotta di radiazione . L'acronimo specifica lo stesso principio di funzionamento del Laser , che fu messo a punto negli USA ad inizio degli anni '60 con diverse tecniche : in California con una tecnica allo stato solido che sfruttava il cristallo del rubino e , contemporaneamente , fu depositato sempre negli Stati Uniti un brevetto di un laser a partire da due gas , elio e neon.

Quest'ultimo brevetto venne in realtà inizialmente definito Maser ottico a gas : storicamente la realizzazione del Maser ( Microwave Amplification by Stimulated Emission of Radiation ) ha preceduto la costruzione del Laser ; fu infatti realizzato circa un decennio prima e il nome è frutto di un acronimo molto simile a quello del Laser , in cui Light ( Luce ) è sostituito da Microwaves ovvero microonde , cioè radiazioni elettromagnetiche con lunghezza d'onda maggiore ( cioè frequenza inferiore ) a quella dello spettro della luce visibile.

Alla base del dispositivo c'è il fenomeno dell'emissione stimolata o emissione indotta , indagata nei decenni precedenti a partire da uno studio di Albert Einstein nel 1917 . A differenza dell'emissione spontanea , che altro non è che la luminescenza cioè il fenomeno di emissione di radiazioni luminose da parte dei corpi durante il passaggio da stati ad energia superiore a stati di energia inferiore , dove i fotoni emessi hanno direzione e fase casuale , nell'emissione stimolata questo passaggio di stato è appunto provocato da radiazione elettromagnetica alla stessa frequenza , direzione e fase di quella incidente ed è una luce coerente. Vedremo nel prossimo paragrafo cosa si intende per luce coerente.

Le caratteristiche della luce laser e le sue applicazioni

Le applicazioni del laser sono dovute a caratteristiche molto particolari del fascio luminoso emesso dal dispositivo , che sono :

coerenza spaziale e temporale : le onde luminose conservano la stessa fase nel tempo e hanno la stessa fase in tutti i punti del fascio luminoso ;
monocromaticità : lo spettro delle frequenze luminoso è molto stretto , caratteristica legata alla coerenza temporale ;
direzionalità : il fascio luminoso è fortemente direzionale e collimato ( cioè non si disperde anche a distanze molto lunghe ) , questa caratteristica è legata alla coerenza spaziale ;
alta irradianza o densità di potenza W/cm2 : è legata alla direzionalità , essendo la potenza concentrata su una superficie molto stretta , il rapporto W/cm2 è alto ;

Come viene prodotta la luce laser : mezzo attivo , pompaggio e cavità

Per arrivare dall'enunciazione delle teorie sull'emissione indotta ad un dispositivo in grado di tradurre queste teorie in luce laser sono stati impiegati diversi anni , perché la tecnologia è effettivamente molto più complessa di quanto possa sembrare.

Il primo problema da risolvere consiste nel pompaggio del mezzo attivo , ovvero nel portare il mezzo attivo che produrrà l'emissione indotta ad uno stato di inversione della popolazione , dove la maggior parte degli atomi del materiale possiede più elettroni nello stato eccitato che nello stato fondamentale. A seconda della tecnica impiegata per portare il mezzo attivo in questo stato si parla di pompaggio ottico ( mediante luce ) , pompaggio elettrico ( mediante il passaggio di corrente o una scarica elettrica ) , pompaggio chimico ( mediante una reazione chimica ) o pompaggio atomico ( collisioni tra atomi o molecole ).

Il secondo aspetto tecnologicmente rilevante consiste nell'amplificare l'emissione indotta e nel renderla di caratteristiche tali da poterla utilizzare nelle varie applicazioni del laser. Questo avviene calando il mezzo attivo in una cavità ottica o risonatore ottico : immaginiamola come costituita da due specchi , di cui uno semiriflettente. La luce nella cavità viene ripetutamente riflettuta e amplificato , finché parte viene emessa attraverso la parete semiriflettente .

Il diodo Laser e la grande diffusione del Laser

Un grande impulso alla diffusione del laser e al moltiplicarsi delle sue applicazioni si è avuto negli anni '70 quando si è iniziato a realizzare laser con dispositivi a semiconduttore , il cosiddetto diodo laser , con conseguente miniaturizzazione e calo dei costi grazie alle economie di scala.

I diodi laser trovano applicazione nei seguenti campi : 

1) lettori ottici come quelli di CD , DVD , Blu Ray . Il lettore CD è forse stato il primo esempio di impiego di massa dei diodi laser : era il 1982 e il lancio del lettore CD da parte di Sony e Philips , grazie anche alla produzione di massa dei diodi laser da parte di Sharp , segno la fine dell'era analogica nel settore audio e hi-fi per entrare nell'era digitale. 
2) stampa Laser : la stampa laser è ormai sul mercato da oltre 40 anni , quando furono introdotte da Xerox , e oggi permettono di raggiungere alte velocità e qualità di stampa con grande affidabilità e silenziosità ; i costi sono ancora mediamente più alti della stampa a getto d'inchiostro , ma si sono sensibilmente ridotti col crescere della loro diffusione ; le stampanti laser funzionano in realtà su principi di elettrostatica : il compito del fascio laser è di colpire determinati punti del tamburo, un rullo caricato di carica elettrostatica positiva , facendo perdere la carica nei punti colpiti ; in questo modo i punti rimasti carichi positivamente attirano la polvere del toner , che è invece caricata negativamente ; la polvere si poggia sul foglio di carta e viene fissata mediante calore passando attraverso i rulli fusori.
3) sorgenti nei sistemi di comunicazione ottica : a questo proposito è immediato pensare alle fibre ottiche , ma la caratteristica del fascio laser di non disperdersi anche su lunghe distanze , li rendono ideali anche per le comunicazioni ottiche in spazio libero. Queste comunicazioni hanno lo svantaggio di poter raggiungere distanze di qualche decina di km e di necessitare che non vi siano ostacoli o agenti atmosferici tra trasmettitore e ricevitore ; 
4) strumenti di misura come telemetri e livelle laser : qui affrontiamo nel dettaglio come funziona un telemetro
5) lettori di codici a barre
6) puntatori laser : nati per i sistemi di puntamento in ambito militare e di armamenti , la loro miniaturizzazione e diffusione li ha resi facilmente disponibili a qualsiasi utente; per questo è importante la classificazione della pericolosità per la salute umana secondo le norme IEC 60825 e Cenelec EN 60825-1 ;
7) visori a sovraimpressione ( o head-up display ) : inizialmente nati in ambito aeronautico militare , poi diffusisi nell'aviazione civile e ora anche in ambito automobilistico
8) strumenti per la realtà aumentata , proiezione di immagini , dolby vision

Read more...

Il Laser negli strumenti di misura

Tra le tante applicazioni in cui il Laser è stato impiegato nei suoi quasi 70 anni di storia ci sono sicuramente le misurazioni. Gli strumenti di misura Laser sono ormai una realtà , soprattutto in edilizia e nei campi ad essa connessi ( impiantistica elettrica e idraulica , trasporti , ecc ) : alcuni strumenti molto diffusi sono il distanziometro , telemetro e la livella laser .

Il misuratore o telemetro laser è un dispositivo di alta precisione che permette di misurare la distanza tra due punti grazie all’emissione di un raggio laser a bassa intensità e misurando , tramite un sofisticato sistema di calcolo , il tempo intercorso tra l’emissione del raggio e il ritorno del suo riflesso.

Quali sono gli aspetti bisogna prendere in considerazione nella scelta di un misuratore di questo tipo ?  Gli aspetti determinanti per la scelta del misuratore laser sono sicuramente la precisione e funzionalità ma anche la grandezza il peso del prodotto e dimensioni dello schermo.  Questi fattori sono molto importanti perché ne determinano la maneggevolezza e la migliore fruibilità in tutte le situazioni. La maggior parte dei dispositivi viene utilizzata nell’edilizia civile e devono consentire misure precise in tutti i tipi di ambienti anche con ostacoli e la possibilità di leggere chiaramente i dati in tutte le situazioni di visibilità.

Per vedere quali funzionalità fornisce un misuratore laser rispetto a un normale altro strumento di misura delle distanze prendiamo un esempio di prodotto tra i vari misuratori disponibili sul mercato : il misuratore laser PCE-LDM 45 della PCE Instruments. Grazie ad un display retroilluminato fornisce risultati perfettamente leggibili e che può essere utilizzato per effettuare misure singole o per misurare in modalità continua, quando si vuole allineare superfici diverse divise da ostacoli. Grazie alla funzione pitagorica , permette all’operatore di calcolare anche la superficie e il volume di un ambiente , avendo a disposizione anche la funzione di addizione e sottrazione e una memoria interna per 20 punti di misura.  Completano le funzionalità di questo misuratore potente e versatile, la funzione di minimo e massimo e la possibilità di effettuare misurazioni fino a 40 m.

Read more...
Subscribe to this RSS feed

ENG Service - ENerGy & ENGineEriNG
Indirizzo: Monte San Vito (AN) - Ufficio Commerciale H24: (+39) 333 2527289 - Email info@ingegneria-elettronica.com

Questo sito utilizza cookie tecnici e di profilazione propri e di terze parti per le sue funzionalità e per inviarti pubblicità e servizi in linea con le tue preferenze. Se vuoi saperne di più clicca qui.
Chiudendo questo banner, scorrendo questa pagina o cliccando qualunque suo elemento acconsenti all’uso dei cookie.